

## dr hab. Ewelina Hallmann

# **Division of Organic Food**



Nutritive value and the content of bioactive compounds in organic and conventional fruits and vegetables

# Why organic farming?

Plants in organic system are cultivated without artificial pesticides and readily available fertilizers

✤ Natural animals manures, compost and green manures are widely used, rotation of crops is rich. This leads to natural balance farm – environment.

✤ Organic farming created a new market for organic products, because modern consumer are looking for more safety and controlled foods.

The knowledge about healthy nutrition habits among consumers is growing. <u>There is a hypothesis telling that organic plants contain higher level of</u> <u>bioactive substances, e.g. antioxidants: phenols, vitamin C, anthocyanins, than</u> <u>conventional ones.</u>

# C/N balance theory (Carbon to Nitrogen)

In natural conditions when nitrogen (N) is readily available (conventional agriculture), plants would primarily make compounds with high N content, e.g. proteins, amino acids for growth and N-containing secondary metabolites such as alcaloids.

When N-availability is limiting for growth (organic agriculture), metabolism changes more towards carbon (C) containing compounds: sugars, starch, cellulose and non-N-containing secondary metabolites such as phenolic and terpenoids, some vitamins and carotenoids.

(Brandt and Molgaard 2001)

# **Theory GDBH (Growth Differentiation Balance Hypotesis)**

Plant in any given situation will assess the resources available to it and optimize its investment in processes directed towards growth or differentiation, respectively.

Organically produced plant foods could be more health-promoting than conventional foods. This is due to the differences in management practices between organic and conventional farming:

•An activation of the plant defense mechanisms by excluding synthetic plant protection agents;

•An active soil life where plants and microbes interact exchanging certain metabolic compounds;

•A balanced mineral nutrient uptake where excess of easily available nutrients is avoided.

#### (Brandt and Molgaard 2001)

# World of carotenoids

The World is full of colors – natural and artificial (created by man) pigments.

There are almost 700 pigments, which belong to carotenoids group. They give yellow, orange and red pigmentation for fruit and vegetables.

Carotenoids exist too in leafy vegetables, but they are covered by green pigment – chlorophyll. In autumn, when leaves stop producing chlorophyll, their color is changing into yellow, red and brown.

Within huge group of carotenoids beta – carotene is best know. It is pigment typical for orange, yellow and green – leafy vegetables. Lycopene gives red color for tomato fruit. Lutein and zeaxantin occur in corn.

#### Carotenoids

Carotens (beta-carotene, alfa-carotene, sigma-carotene, lykopene, capsorubin)

Xantophylles (zexanthin, lutein, neoxanthin, violaxanthin)



# Profits of the carotenoids for human health

□ They decrease level of cholesterol in blood and protect from coronary attak;

□ There is experimental evidence that some carotenoids have anti-inflammatory properties;

□ Because they are free radical scavengers, they are good antioxidants agents. They have anti - cancer properties;

 Beta – carotene protects human body against some kinds of skin cancer, occuring after UV radiation or toxic chemicals.

# Epidemiogical studies involving carotenoids and chronic diseases (2009-2013)

The higher consumption of lycopene positively diminished bones cavity in osteoporosis suffer in group of 540 woman volunteers >75 age, but only in case of loin part of backbone. There was not observed any influence of lycopene in case of different part of backbone (Sahni et al. 2009).

There was not any correlation between consumption of leafy vegetables rich in beta-carotene and changing of variability of heart ECG in group of 580 men in >65 age (Park et al. 2013)



There was strong correlation between patent's age also lack of zeaxanthin in blood plasma and ARM symptoms (age-related maculopathy) (O'Connell et al. 2011).



## **SOURCES OF BETA – CAROTENE**



- yellow and orange vegetables : carrot, pumpkin, yellow tomatoes, bellpepper
- orange fruit: apricots, peach, nectarine, melon, mango
- green -leafy vegetables: spinach, culiflower, broccoli, letuce, cichory, savoy cabbage, kale, beets lives, turnip, wild mustard, dandelion, endivie.



• **other fruit and vegetables**: green asparagus, green peas, sour cherry, dry fruits (apricot, peach)

## SOURCES OF LYCOPENE



**\*red vegetables :** tomato, cherry tomato, bell pepper

**\* fruit**: pink grapefruit, blood organe, apricot



\*tomato products: juice, ketchup, souce, dry tomato-soup,

tomato concentrate











Epidemiogical studies involving lycopene, lycopene-containing foods and chronic diseases (1989-1999)

| Disease         | Major conclusion            | Reference                    |
|-----------------|-----------------------------|------------------------------|
| Prostate cancer | Intake of tomato products   | Giovannucci et al. 1995,     |
|                 | inversely associated with   | Clinton et al. 1996          |
|                 | prostate cancer             |                              |
| Digestive tract | Reduced risk with high      | Franceschi et al. 1994       |
| cancer          | tomato intake               |                              |
| Bladder cancer  | Serum lycopene associated   | Helzlsour et al. 1989        |
|                 | with decreased risk         |                              |
| Skin cancer     | Decrease on skin lycopene   | Ribago – Mercado et al. 1995 |
|                 | on exposure to light        |                              |
| Breast cancer   | Serum lycopene associated   | Dorgan et al. 1998           |
|                 | with decreased risk         |                              |
| Cervical cancer | Lycopene level showed       | Sengupta and Das 1999        |
|                 | inverse risk                |                              |
| Cardiovascular  | Adipose tissue lycopene     | Kohlmeier et al. 1997,       |
| lisease         | associated with lower risk, | Kristensen et al. 1997       |
|                 | low serum lycopene with     |                              |
|                 | increased mortality         |                              |
|                 |                             |                              |

Bramley 2000



Tomato



# Sweet bell pepper







Aubergine





Potatoes





Cherry tomato

# In polish language tomato is called "pomidor" it is come from italian Pomo d'oro (golden apple or apple of love )

The tomato country origins are Middle and South America, witch from it, was bring to Europe and very fast extend the new continents.

Funny story is that at the beginning it was treat as poison plant and was cultivated as a ornamental flower in small gardens

-tomatine, solanine



Today tomato is one from the most popular vegetables in the Word and integrated part of numerous international kitchen

Some time it is seems that it is a symbol of countries as italian and spanisch kitchen



# Compare of carotenoids content in vegetables from organic and conventional production

| vegetables | compounds            | difference | source                     |
|------------|----------------------|------------|----------------------------|
|            |                      | in %       |                            |
|            |                      | org/conv   |                            |
| tomato     | lycopene             | + 14.42    | Caris-Veynard et. al. 2004 |
| tomato     | lycopene             | - 13.59    | Toor et al. 2006           |
| tomato     | lycopene             | + 0.31     | Pieper and Barrett 2008    |
| tomato     | lycopene             | + 3.38     | Juroszek et al 2009        |
|            |                      | +1.13      |                            |
| tomato     | beta-carotene        | + 41.38    | Caris-Veynard et. al. 2004 |
| carrot     | beta-carotene        | -7.88      | Warman and Havard<br>1997  |
| carrot     | beta-carotene        | +2.84      | Abele 1987                 |
|            |                      | +12.11     |                            |
| red pepper | total<br>carotenoids | + 86.71    | Pérez-López et al. 2007    |
|            |                      | +86.71     |                            |



#### Organic vegetables contained more carotenoids Results obtained in Division of Organic Food (WULS)

| vegetables    | compounds   | difference | source                     |
|---------------|-------------|------------|----------------------------|
| -             |             | in %       |                            |
|               |             | org/conv   |                            |
| tomato        | lycopene    | - 30.81    | Rembiałkowska et al. 2005  |
| tomato        | lycopene    | + 22.03    | Rembiałkowska et al. 2005a |
| tomato        | lycopene    | - 19.20    | Hallmann and               |
|               |             |            | Rembiałkowska 2007         |
| tomato        | lycopene    | - 36.60    | Hallmann and               |
|               |             |            | Rembiałkowska 2007a        |
| tomato        | lycopene    | -19.21     | Hallmann and               |
|               |             |            | Rembiałkowska 2008         |
| tomato juices | lycopene    | + 29.34    | Hallmann and               |
| Ŭ             | • •         |            | Rembiałkowska 2008         |
|               |             | - 23.64    |                            |
| bell pepper   | sum of      | + 2.98     | Rembiałkowska et al. 2005  |
|               | carotenoind |            |                            |
| bell pepper   | sum of      | + 10.80    | Hallmann et al. 2007       |
|               | carotenoind |            |                            |
| bell pepper   | sum of      | + 7.33     | Hallmann and               |
|               | carotenoind |            | Rembiałkowska 2007         |
| bell pepper   | sum of      | + 7.89     | Hallmann et al 2008        |
|               | carotenoind |            |                            |
| bell pepper   | sum of      | +3,43      | Hallmann and               |
|               | carotenoind |            | Rembiałkowska 2008         |
|               |             | +6.49      |                            |









The content of carotenoids in two carrots cv .'Perfekcja' i 'Flacoro' from organic and conventional cultivation in 2010



The content of carotenoids in two carrots cv .'Perfekcja' i 'Flacoro' from organic and conventional cultivation in 2011





The content of carotenoids in cherry tomato 'Pikolino' i 'Conchita' fruits from organic and conventional cultivation in 2007



The content of carotenoids in cherry tomato 'Pikolino' i 'Conchita' fruits from organic and conventional cultivation in 2008





The content of carotenoids in red pepper fruits from organic and conventional cultivation in 2006



The content of carotenoids in red pepper fruits from organic and conventional cultivation in 2007







#### Carotenoids profile in organic and conventional bell pepper

# Vitamin C benefits for human health

- 1. It is vital to the production of collagen, which is involved in the building and health of skin and blood vessels
- 2. It may help reduce allergy symptoms (it has natural antihistamine properties)
- 3. It helps protect the fat-soluble vitamins A and E, low-molecule antioxidants (glutathione), flavonoids as well as fatty acids from oxidation
- 4. It helps to prevent damage to cells from free radicals (free radical scavengers)
- 5. It is needed for antibody production
- 6. It facilitates assimilation of non-hem iron by human organism and takes part in blood cells synthesis
- 7. It stop synthesis of toxic nitrosamines in human stomach.

# Selected bioactive compounds with antioxidative activity (antioxidants)

## Vitamn C (ascorbic acid)

Higher consumption of vegetables which are rich in vitamin C was correlated with higher level of ascorbic acid in blood plasma and it could be used as a biomarker of heart attack. 196 500 of volunteers were examined (people from group of risck) In 42% cases the high level of plasma vitamin C was positively corelated with low level of heart attack. (Myint i in. 2008)

5-a-day fruits and vegetables consumption by 170 volunteers with esophagus tumors was positively correlated with decreasing of development cancer cells in comparison to control group (182 people), who eat vegetables only one-a-day (Thompson i in. 2009)

## SOURCES OF VITAMIN C

# **Vegetables:**

\*Solanacae family: bell pepper, tomatoes, patatoes

*Cruciferae* family: kale, kolhrabi, broccoli, culiflower, brousels sprout, red cabbage, savoy cabbage, chinensis cabbage, withe cabbage, radish, turnip, rutabaga



Umbelliferae family: parsley (root and leaves)



## **Fruits:**

- berries: blackcurrant, redcurrant, strawberry, goosberry
- apples



\* exotic fruit: kiwi, tangerine, grapefruit, orange, lemon



# Compare of vitmain C content in vegetables, potatoes from organic and conventional production

| vegetables    | Difference<br>in %<br>org/conv. | source                         |
|---------------|---------------------------------|--------------------------------|
| Spinach       | +37.48                          | Vogtmann i in. 1984            |
| Spinach       | +77.59                          | Schuphan 1974                  |
| Celery        | +10.96                          | Leclerc i in. 1991             |
| Celery        | +18.64                          | Schuphan 1974                  |
| White cabbage | +75.84                          | Schuphan 1974                  |
| White cabbage | +30.12                          | Rembiałkowska 1998             |
| Lettuce       | +58.76                          | Schuphan 1974                  |
| Leek          | +28.52                          | Lairon i in. 1986              |
| Potatoes      | +16.77                          | Petterson 1978                 |
| Potatoes      | +16.96                          | Schuphan 1974                  |
| Potatoes      | +99.06                          | Fischer i Richter 1986         |
| Potatoes      | +20.91                          | Rembiałkowska i Rutkowska 1996 |
|               | + 40.92                         |                                |



# Compare of vitmain C content in fruits and vegetables from organic and conventional production /continue/

| S]         | pecies | (-) less / (+) more<br>org/conv in % | source                  |
|------------|--------|--------------------------------------|-------------------------|
|            |        | vitamin C                            |                         |
| potatoes   |        | +13.3                                | Kolbe et al. 1995       |
| potatoes   |        | +8.05                                | Hajslova i in. 2005     |
| cabbage    |        | +11.0                                | Warman et al. 1997      |
| corn       |        | -34.38                               | Asami i in. 2003        |
| young beet | greens | +10.61                               | Moreira i in. 2003      |
| red pepper |        | +23.3                                | Pérez-López et al. 2007 |
| orange     |        | +11.96                               | Rapisarda i in. 2005    |
|            |        | +20.55                               |                         |
|            |        |                                      |                         |



# Organic vegetables contained more vitamin C Results obtained in Division of Organic Food (WULS)

| species           | (-) less / (+) more | source                           |
|-------------------|---------------------|----------------------------------|
|                   | org/conv in %       |                                  |
|                   | vitamir             | n C                              |
| onion             | +129.90             | Hallmann i Rembiałkowska 2006    |
| potatoes          | + 21.0              | Rembiałkowska 2000               |
| tomatoes          | +18,7               | Hallmann and Rembiałkowska 2007  |
| tomatoes          | +49.0               | Hallmann and Rembiałkowska 2007a |
| tomatoes          | -30.93              | Rembiałkowska i in. 2003 b       |
| tomatoes          | +41.51              | Hallmann, 2005                   |
| tomatoes          | +35.04              | Rembiałkowska, 2005              |
| tomatoes (cherry) | +28.0               | Rembiałkowska et al. 2005        |
| red pepper        | +26.79              | Hallmann, 2005                   |
| red pepper        | +13.37              | Hallmann i in. 2007              |
| red pepper        | +20.1               | Rembiałkowska et al. 2005        |
| apples            | +32.91              | Rembiałkowska i in. 2003 a       |
|                   | +32.12              |                                  |











The content of vitamin C in cherry tomato 'Pikolino' i 'Conchita' fruits from organic and conventional cultivation in 2007



The content of vitamin C in cherry tomato 'Pikolino' i 'Conchita' fruits from organic and conventional cultivation in 2008





The content of vitamin C in organic and conventional cabbage, kohlrabi and leek

2006



The content of vitamin C in organic and conventional cabbage, kohlrabi and leek

2007





2007



The content of vitamin C in organic and conventional red pepper 2008



## Nominal division of plants metabolite's compounds:

1. phenolic comounds

phenolic acids (chlorogenic, caffeic, cinnamonic)

#### flavonoids:

flavons (apigenin, hesperidin, luteolin)

flavanons (naringenin, taxipholin)

flavonols (quercetin, kaempferol, myrcytin, rutin)

flavanols (catechin, epicatechin, epigalocatechin)

isoflavonols (daidzein, genistein)

anthocyanins (cyjanidin, malwinidin, pelargonidin, petunin)

2. Terpenoids

monoterpenoids (limonen, mentol)

tetraterpenoids (carotenoids, xantophyll)

3. Nitrogen compounds (alcaloids, amines, amino acids non-proteins, glycosides, glucosinolates)

# Flavonoids benefits for human health

- 1. They enhance arteries wall and protect against bloods micro-effusion.
- 2. They protect vitamin C against oxidation. There is experimental evidence that certain flavonoids have anti-inflammatory properties, and there are reports that orally administered flavonoids may have antiviral and antimicrobial activities.
- 3. May affect the relaxation capabilities of blood vessels and reduce risk of stroke.
- 4. They are leading to decreases in LDL-cholesterol oxidation and plaque formation on arterial walls. This can reduce heart attack risk.
- 5. Soya-beans bioflavonoids are recommended for woman in postmenopause age.

# Penolic compounds Phenolic acids (polyphenol acids)

Regular daily consumption 2 cups of coffee or 4 cups of black tea was positively correlated with diminishing of diabetes symptoms (II type non-insulin depends). The examined group of suffer volunteers was 37,000 people. That effect cause the regular consumption of chlorogenic and caffeic acids from infusions (Odegaard et al. 2008)



Regular consumption of berry fruits, especially strawberry influence on decreasing of LDL cholesterol and increasing of HDL cholesterol among examined group of volunteers (72 people) with diagnosis of potential risk of coronary attack, but not change the total cholesterol level also triacyloglicerol level (Erlund i in. 2008)



#### 1. Phenolic compounds: Flavonoids

## Flavons (apigenin, vitexin, hesperydidin, luteolin,)

(leaves and fruits of hawthorn, bitter orange, peppermint leaves)

Apigenin is one of bioactive flavons which can activate a very specifically **protein p53**. This protein is all the time present in cells, but in sleep mode (not active). It function is protection cell's DNA against mutations and cancerogenesis. Because developing tumors blocking protein p53 carcinogenesis process is start. When apigenin is inject to cells, the blocking of p53 is remove and carcinogenes agents making apoptosis and cells back to normal faze (Liu 2005).



Vitexin can stop a very specifically monophagus proteins in case of cardiac inflammation. It can slow down illness development Kowalski et al. (2006).

Hesperidin can be use to treat phlebitis insufficiency (Garg i in. 2001) and can reduce cholesterol and triacetyloglicerols level in blood (Monforte i in. 1995)



Regular consumption of vegetables rich in luteolin (broccoli, kale) was positively correlated with decreasing esophagus tumor (Sesso i in. 2003)



#### Flavanones (naringenin, taxipholin)

(grapefruit, oranges, peach)

Regular consumption during two month 750 ml (per day) orange juice influence positively HDL cholesterol synthesis about 21% and decreased LDL-HDL ratio about 16% (Kurowska et al. 2010).

Injection of taxipholin to cells of mouse delayed formation of breast tumors (Ebeler et al 2012)





#### •flavonoles (kaempferol, quercitin, rutin, myrcytin)

(black and green tea, leaves and fruits of sloe (*Prunus spinosa*), brasicaceae and solanaceae family vegetables)

Vegetables rich in kaempferol consumption diminish risk of pancreatic cancer in huge group of volunteers (183,500 men), who drink two cup of tea per day and eat twice per day solanaceae vegetables (Nöthlings et al 2008).



Drinking two or three cup per day of black tea did not change incidence of breast and womb cancer in group of 3234 elder woman (Wang et al. 2009)



#### flavanoles (catechin, epicatechin, epigallocatechin)

Catechins from black tea, cocoa drink and vegetables significantly diminished risk of ischaemic heart disease in group of volunteers (806 man in 65-85 age) (Hollman i in. 2001)



Epigallocatechin from green tea not significantly influenced to keeping of low body mass after losing weight treatment in group of 5634 woman (Hursel i in. 2009)



## **SOURCES OF FLAVONOIDS**

citrus fruit: grapefruit, orange, tangerine,

**\*fruit:** berries: strowberry, raspberry, goosberry, blackberry, bilberry
apples, plums,

vegetables : bell pepper, cherry tomatoes, broccoli, onion, garlic, letuce,





# Polyphenols content in fruit preserve from organic and conventional production methods

- Higher total phenolic content in organic juice of Bordo variety in comparison to conventional one
- The organic Bordo grape juice presented a higher level of trans-resveratrol, quercitin, rutin, gallic acid, caffeic acid and total flavonoids than conventional one





# Quality of organic and conventional apples and strawberries

- comparative studies (according to Reganold et al., 2001, Nature; Pock et al., 2006 HortScience; Kramer et al., 2006, PNAS (ISA)



# Apple

(antioxidant activity)





#### Compare of polyphenols content in fruits from organic and conventional production

| Plants                   | <b>Bioactive</b><br>substance                   | Co    | ntent | Difference<br>in % | Source                        | 0       |
|--------------------------|-------------------------------------------------|-------|-------|--------------------|-------------------------------|---------|
|                          |                                                 | ORG   | CONV  | org/conv.          |                               | CANO.   |
| Apples                   | Polyphenols<br>(mg / 100g d.m.)                 | 4.66  | 3.93  | +18.58             | Weibel et al. 2000            |         |
| Peach                    | Polyphenols<br>(mg/100 g f. m.)                 | 26.7  | 19.6  | +36.22             | Carbonaro and<br>Mattera 2001 |         |
| Peach                    | Polyphenols<br>(mg of tannic<br>acid/100g f.m.) | 29    | 21.3  | +36.15             | Carbonaro et al.<br>2002      |         |
| Pear                     | Polyphenols<br>(mg /100 g f. m.)                | 49.5  | 48.2  | +2.70              | Carbonaro and<br>Mattera 2001 |         |
| Pear                     | Polyphenols<br>(mg of tannic<br>acid/100g f.m.) | 64.5  | 58.4  | +10.45             | Carbonaro et. al.<br>2002     |         |
| Marrionberries           | Polyphenols<br>(mg /100 g f.m.)                 | 600   | 400   | +50.00             | Asami et al. 2003             |         |
| Strawberries<br>(frozen) | Polyphenols<br>(mg /100 g f.m.)                 | 280   | 240   | +16.67             | Asami et al. 2003             |         |
| Strawberries             | Quercetin<br>(mg/100g f.m.)                     | 0.722 | 0.69  | +4.64              | Anttonen et al.<br>2006       |         |
| Strawberries             | Kampherol<br>(mg/100g f. m.)                    | 0.692 | 0.784 | -11.73             | Anttonen et al.<br>2006       | A B Was |

#### Literature review

+ 18.19

# Compare of polypchenols content in fruits and vegetables from organic and conventional production /continue/

| Plants                      | Bioactive substance                      | Content |      | Difference Sour | Source                       | NAIR                                  |
|-----------------------------|------------------------------------------|---------|------|-----------------|------------------------------|---------------------------------------|
|                             |                                          | ORG     | CONV | org/conv.       |                              | NAR                                   |
| Chinese cabbage<br>Pac Choi | Polyphenols<br>(mg of quercetin/g d.m.)  | 13.5    | 12.5 | +8.00           | Young et al. 2005            |                                       |
| Corn (frozen)               | Polyphenols<br>(mg /100 g f.m.)          | 40      | 25   | +60.00          | Asami et al. 2003            |                                       |
| Lettuce                     | Polyphenols<br>(mg of quercetin/g d.m.)  | 15.2    | 11.5 | +32.17          | Young et al. 2005            |                                       |
| Apples                      | Flavonoles<br>(mg of quercetin/100g f.m. | 1.34    | 0.73 | +83.56          | Rembiałkowska<br>et al. 2003 |                                       |
| Apples                      | Flavonoids<br>(mg/100g d.m.)             | 2.75    | 2.37 | +16.03          | Weibel et al. 2004           | ALC: C                                |
|                             |                                          |         |      | +39.95          |                              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |



#### ③ Organic fruits, preserve and vegetables contained more polyphenols Results obtained in Division of Organic Food (WULS)

| Plants       | Bioactive<br>substance                              | Bioactive<br>substance<br>content |       | Difference<br>in %<br>org/conv. | Source                                |  |
|--------------|-----------------------------------------------------|-----------------------------------|-------|---------------------------------|---------------------------------------|--|
|              |                                                     | ORG                               | CONV  |                                 |                                       |  |
| Red pepper   | Flavonoles<br>(mg/100 g<br>f.m.)                    | 33.81                             | 14    | +141.46                         | Hallmann et al. 2005                  |  |
| Onion        | Flavonoles<br>(mg<br>quercetin/100<br>g f.m.)       | 95.27                             | 84.61 | +12.60                          | Hallmann and<br>Rembiałkowska<br>2006 |  |
| Onion        | Anthocyans<br>(g/100 g f. m<br>mg%<br>delphinidin ) | 14.61                             | 8.37  | +74.55                          | Hallmann and<br>Rembiałkowska<br>2006 |  |
| Tomatoes     | Flavonoles<br>(mg of<br>quercetin/100<br>g f.m.)    | 0.83                              | 0.48  | +72.92                          | Rembiałkowska et<br>al. 2003          |  |
| Apple juice  | Polyphenols<br>(mg/l)                               | 397.3                             | 304.6 | +30.43                          | Rembiałkowska et<br>al. 2006          |  |
| Apple mousse | Polyphenols<br>(mg/100 g<br>d.m.)                   | 712.4                             | 604.6 | +17.83                          | Rembiałkowska et<br>al. 2006          |  |
|              |                                                     |                                   |       | +58.30                          |                                       |  |





The content of flavonols in tomato fruits from organic and conventional cultivation in 2007



The content of flavonols in tomato fruits from organic and conventional cultivation in 2008





The content of flavonols in red pepper fruits from organic and conventional cultivation in 2006



The content of flavonols in red pepper fruits from organic and conventional cultivation in 2007

The average content of flavonols in red pepper fruits from organic and conventional cultivation in 2006-2007





The content of flavonols in onion bulbs from organic and conventional cultivation in 2006



# ANTHOCYANINS

Antocyanins are pigments responsible for the **red**, **purple**, and **blue** colors of many fruit, vegetables, seeds and flowers.

They are often observed in the plant kingdom, where it serves to color anything from fruit to the autumn leaves. The pigment acts as a powerful antioxidant helping to protect the plant from UV damage.

Today, interest in anthocyanin pigments has intensified because of their possible health benefits as dietary antioxidants. Over 300 structurally distinct anthocyanins have been identified in nature. Anthocyanins are one class of flavonoid compounds, which are widely distributed plant polyphenols.

# Anthocyanins benefits for human health

 $\succ$  may also improve eyesight by several mechanisms e.o. helping eyes for their ability to adapt to light and dark.

 $\blacktriangleright$  may increase the production of stomach mucus and protect the stomach from injury.

 $\succ$  they prevent blood clotting and relax blood vessels.

➤ may have antioxidant abilities and are being studied for their anticancer potential and defend cells against dangerous carcinogens.

they have been found to inhibit some human tumor cells



**Forget-Me-Not** 

• The Forget-Me-Not has been used as a symbol of remembrance for those who have suffered or have been lost in war. In Newfoundland, Canada, Forget-Me-Not flowers are worn on July 1 each year in memory of those who died in World War I.

• The Forget-Me-Not is a symbol of Alaska, as it is the state flower. The Forget-Me-Not flower has also been adopted as a symbol for Canada's Alzheimer Society; Alzheimer's disease is the progressive mental deterioration of the brain, hence the Forget-Me-Not symbol of memory loss.



Cornflowers

•In folklore, cornflowers were worn by young men in love; if the flower faded too quickly, it was taken as a sign that the man's love was unrequited.

•The cornflower is also the symbol for Motor Neurone Disease and Amyotrophic Lateral Sclerosis

## **SOURCES OF ANTHOCYANINS:**

Fruit: blackcurant, apples, plums, bilbery, blackberry, grapes, aronia



**\*Vegetables:** aubergine, letuce, broccoli and kale with purple leaves, red onion, purple pepper, red cabbage, ridacchio







The content of antocyanins in organic and conventional black currant







The content of antocyanins in organic and conventional onion bulbs



## **Organic fruits contained also more anthocyanins:**

| species                 | Difference in %<br>org/conv. | source              |
|-------------------------|------------------------------|---------------------|
|                         | anthocyanins                 |                     |
| strawberry              | + 0.66                       | Wang et al. 2003    |
| apples<br>(integ/conv.) | + 22.52                      | Veberic et al. 2005 |
| blood orange            | + 16.40                      | Tarozzi et al. 2006 |
|                         | +13.19                       |                     |



![](_page_54_Picture_3.jpeg)

![](_page_54_Picture_4.jpeg)

#### ③ Organic vegetables contained more antocyanins Results obtained in Division of Organic Food (WULS)

| species | Difference in % | source                        |
|---------|-----------------|-------------------------------|
|         | org/conv.       |                               |
|         | anthocy         | vanins                        |
| apples  | +317.73         | Rembiałkowska et al. 2003     |
| apples  | +69.75          | Rembiałkowska et al. 2004     |
| onion   | +74.53          | Hallmann i Rembialkowska 2007 |
|         | +154.00         |                               |

![](_page_55_Picture_2.jpeg)

![](_page_56_Picture_0.jpeg)

mg/100 g f.m.

![](_page_56_Figure_2.jpeg)

The content of antocyanins in the old and the new apples cultivars

#### The profile of antocyanins in the new and the old apple cultivars

![](_page_57_Figure_1.jpeg)

#### Glucosinolates

![](_page_58_Figure_1.jpeg)

The glucosinolates are a class of organic compounds that contain sulfur and nitrogen and are derived from glucose and an amino acid. They occur as secondary metabolites of almost all plants of the order Brassicaceae

![](_page_58_Picture_3.jpeg)

Plants use substances derived from glucosinolates as **natural pesticides** and as defense against herbivores; these substances are also responsible for the bitter or sharp taste of many common foods such as mustard, radish, horseradish, cabbage, brussels sprouts, kohlrabi, kale, cauliflower, broccoli, turnip, rutabanga

![](_page_58_Picture_5.jpeg)

#### alifatic glucosinolates:

glukoiberin progoitrin sinigrin Glukorafanin glukobrassicanapin sulphoraphan alliloizotiocyanane phenyloizothiocyaniane

Indol's glucosinolates: 4-hydroksyglukobrassycin glukobrassycin 4-metoksyglukobrassycin neoglukobrassycin indol-3-karbinol

![](_page_59_Picture_3.jpeg)

 $\checkmark$ Isothyocianate and indole products formed from glucosinolates may regulate cancer cell development by regulating target enzymes, controlling apoptosis and blocking the cell cycle

 $\checkmark$ Nevertheless, variation in content of both glucosinolates and their bioactive hydrolysis products depends on both genetics and the environment, including crop management practices, harvest and storage, processing and meal preparation

 $\checkmark$  After physical damage to the plant tissue, glucosinolates are broken down, by the endogenous enzyme myrosinase, releasing glucose and a complex variety of biologically active products. The most important and extensively studied of these compounds are the **isothiocyanates**.

| vegetable   | mutagen added           | % reductiuon              | ( In second        |
|-------------|-------------------------|---------------------------|--------------------|
| culiflower  | nitrate+methylurea      | 78                        |                    |
| culiflower  | nitrate+aminopiryne     | 57                        | and a start of the |
| cabbage     | nitrate+sorbic acid     | Moderate (not calculable) |                    |
| culiflower  | nitrate+sorbic acid     | Moderate (not calculable) | and the second     |
| cabbage     | tryptophan pyrolysate   | 97                        |                    |
| broccoli    | tryptophan pyrolysate-1 | 97                        |                    |
| broccoli    | tryptophan pyrolysate-2 | 81                        |                    |
| broccoli    | ethidium bromide        | 92                        |                    |
| broccoli    | 2-Aminoanthracene       | 84                        |                    |
| broccoli    | AF-2                    | 0                         | A Report of        |
| broccoli    | Oxidized linolenic acid | 82                        |                    |
| cabbage     | Oxidized linolenic acid | 76                        | A Day of the       |
| red cabbage | Oxidized linolenic acid | 81                        | · · ·              |
| culiflower  | Oxidized linolenic acid | 76                        |                    |
| cabbage     | Tryptophan pyrolysate-2 | 35                        |                    |

Summary of antimutagenic results

# **CONCLUSIONS:**

- 1. Organic fruit and vegetables contained more vitamin C, flavonoids, anthocyanins (generally bioactive substances) than conventional produce and this confirms C/N balance theory.
- 2. Though conventional vegetables (bell pepper and tomatoes) contained more lycopene in comparison to organic ones, the rest of carotenoids were more abundant in organic vegetables.
- 3. Organic fruit and vegetables can be recommended as health supporting plant products useful in cancer prevention.

![](_page_63_Picture_0.jpeg)

# Thank you for attention