Instrumental methods for biological samples analysis without necessity of their separation

Dr hab. Piotr Koczoń Warsaw University of Life Sciences

Plan of presentation

Infrared spectroscopy as non-invasive analytial method

- Current and previous applications
- Statistical background for experimenatal data management PCA, PLS, modelling
- **Area of application**
- **Examples of application**
- **Comparing NIR and MIR**

Advantages and disadvantages of FT-IR

The application of FT-IR spectroscopy for biological mixture analysis

Analysis with sample separation

- Distillation
- Crystallization
- Extraction
- Chromatography

- Elemental analysis
- Solubility test
- Chemical formula
- NMR spectrum
- IR spectrum

Analysis without sample separation

- ➤The FT-IR technique
- ➢FT-IR applications
- Statistical methods

MIR and NIR

Study of foods

- Characteristic features
- Chemical composition of mixture
- Microbiological approaches
- GMO products determination
- Verification of process conditions

Advantages and disadvantages of spectral methods

IR spectroscopy

IR – REFERENCE METHOD RELATIONSHIP. STATISTICAL MODEL

Intensity or frequency of some dozen bands or IR ranges PLS PCA component 1 component 2 component 3 or feature 1 feature 2 etc....

Linear combination of spectral (IR) data and correlation of obtained this way statistical numbers with analytical data from reference method

Linear model mono- or multi- elemental

PCA – principal component analysis

- 1. Registration of spectra series for samples with similar properties
- 2. Detection of spectral ranges of highest variability
- 3. Selection of spectral ranges for analysis
- 4. Calculation of "avarege" spectrum
- 5. Principal component calculation the spectra of highest variability
- 6. The reconstruction of original spectrum the number of principal components and the level of variability

PLS – partially least square

- 1. Registration of spectra series for samples with similar properties
- 2. Detection of spectral ranges of highest variability
- 3. Determination of a given component or pattern preparation
- 4. Determination of principal components correlated with variability of the level of a given compound
- 5. Mathematical description of the model

The x variable denotes the principal component, while y denotes value of given parameter determined by a reference method, k is proportional coefficient for given varible in linear equation

Characteristics of the model

The higher value the better model the correlation coeffcient between actual and modeled data

SS — Prediction Residual Error Sum of Squares, the definition is

The lower value the better model

$$\sum_{i=1}^{n} \sum_{j=1}^{m} (Cp_{i,j} - C_{i,j})$$

SECV - standard error of cross validation

n – number of samples (number of spectra) SEP – standard error of prediction

- i number of components in a model
- Cp matrix of values predicted by a model
- C matrix of real values

What is IR spectrum

Spectrum is a simply graph of certain x value versus y value

This relationship can be presented as a plot

This relationship can be presented as a table

In the second case differences are clerly seen

Two types of analysis

DISCRIMINANT ANALYSIS

REFERENCE ANALYSIS

Samples differentiation

Component content determination

Analysis of groceries

Analysis of chemical composition of mixtures Features of a given product **Determination of number of microorganisms** Adulteration determination Verification of technological process conditions

Range of applications

Alcoholic beverages Fish Meat Eggs Vegetables and fruits Dairy products

Food mixtures

Other mixtures

Oils Fuels Cosmetics Other

The IR spectra of samples of light butter "Dobre" registered during 10 weeks of storage at room temperature (25 °C)

Results obtained for butters

Model for light butter "Dobre":

18 samples were used to construct the model. Samples were stored at room temperature for 10 weeks

R² = 0.97 PRESS = 2.91 Factors number = 5 Spectral range: 1040 – 1020 cm⁻¹ Diagnostic: PLS, cross validation

The model relates acid number data with spectral data . Based on this model, one can determine acid number of an unknown sample and therefore evaluate freshness of butter.

Acid values for selected butter samples stored at room temperature for different lenghts of time. Values determined by classical method are in black while those modeled in green

Butter type	WEEK 1		WEEK 3		WEEK 4		WEEK 5	
	Accepted value	model						
"Dobre " light	0.7	0.8	1.3	1.1	1.6	1.7	2.7	2.7
Butter type	WEEK 7		WEEK 8		WEEK 9		WEEK 10	
	Accepted value	model						
"Dobre " light	3.9	3.9	5.2	5.3	7.3	7.1	10.6	10.3

Sample results obtained for light butters

The application of FT-IR to wine parameters determination

Spectra of bootleg vodka (moonshine) and methanol (green)

Alcoholic beverages parameters determination

Sample results:

ethanol	R ² = 0.98; SEP = 0.34%
рН	R ² = 0.81; SEP = 0.07%
Milk acid	R ² = 0.81; SEP = 0.41%
Reducing sugars	R ² = 0.71; SEP = 0.33%;

SEP standard error of prediction

Data from Urbano-Quadrado iet al., 2004, 2005

Sample results obtained for Cabernet Sauvignon and Shiraz wines:

malvidin-3-glucoside colorants tannin agents R² = 0.91; SECV = 28 mG/dm³ R² = 0.87; SECV = 5.9 mG/dm³ R² = 0.81; SEP = 0.41%

Data from: Cozzolino et al., 2004, 2006

SECV standard error of cross validation

The content of ethanol and methanol in wine distillates

The content of methnol in distillates can be relatively high due to activity of yeasts in raw materials

Studing fish composition

Differetiation of fresh and frozen fish (authenticity of the product)

Number of microorganisms in poultry meat

Measurements were conducted every 1 hour during 24 hours

Starting number of
microorganisms7x10⁶ CFU/g (6.85 log TVC)

Final number of microorganisms 2x9⁶ CFU/g (9.31 log TVC)

Amide band I (1640cm⁻¹) Amide band II (1550 cm⁻¹) Amine band (1240 cm⁻¹ i 1088 cm⁻¹)

Model allowed to determine microorgnisms level with accuaracy:

$0.15 - 0.27 \log_{10} TVC$

Verification of technological process conditions

Ilnesses developing related to food-borne microorganisms

KAMABOKO:

 Fish meat was placed in polivynyl chloride packigings (circumference -480 mm, lenght 100 mm)

 Heating for 10 minutes in water bath: from 30 do 90°C with 10°C intervals

- 3. Fast cooling to 4^oC
- 4. Stored for one night
- 5. Spectral range : 1100 2498 nm

Tasty, durable product of

proper nutritional value

GMO study as modeled on barley

Munck et al., (2007) A new holistic exploratory aproach to systems biology by near infrared spectroscopy evaluated by chemometrics and data inspection Journal of Chemometrics, 21, 406-426

C type (lys5f) - (high β -gluten, content low sugar content) **P** type (lys3a) - (low β -gluten, high lysine content)

N - native barley

Туре	Dry matter	Protein	Amides	BG	Fat	Sugars
С	91.62	16.98	0.42	14.21	2.71	32.1
	<u>+</u> 0.75	<u>+</u> 2.13	<u>+</u> 0.06	<u>+</u> 2.9	<u>+</u> 0.76	<u>+</u> 5.8
Р	90.18	15.77	0.29	3.79	3.5	44.75
	<u>+</u> 0.49	<u>+</u> 2.33	<u>+</u> 0.05	<u>+</u> 1.36	<u>+</u> 0.06	<u>+</u> 4.81
N	90.22	15.64	0.42	5.72	1.91	52.16
	<u>+</u> 0.79	<u>+</u> 2.09	<u>+</u> 0.07	<u>+</u> 0.99	<u>+</u> 0.16	<u>+</u> 4.25

GMO study modeled on FT-IR NIR range spectra of barley

GMO study modeled on barley - correlation

Dr hab. Piotr Koczoń, Department of Food Chemistry, Faculty of Food Sciences, WULS

ioi

GMO study modeled on barley

BG - the percentage of β -gluten in dry matter

Application of discriminant analysis of IR spectra for dairy product analysis

MIR and NIR

The same sample the same technique different spectral range

NIR Near infrared spectroscopy

MIR Midle infrared spectroscopy

Overtones and composed tones of CH, NH, CO, OH groups and other

Fundamental vibrations of CH ,NH, CO, OH and other groups

Base range bands Are repeated in NIR (1,2 or3 overtones respectively)

Advantages and disadvantages of FT-IR spectroscopy

ADVANTAGES

- Short time of measurement
- No sample pre-preparation
- No chemicals used
- Ability to apply on-line and in-line

DISADVANTAGES

 IR is not independent method correlation with data from oher methods in necessary
Long time of model preparation

Selected literature

Ellis DI, Broadhurst D, Goodacre R (2004) Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning. *Analytica Chimica Acta*, 514, 193 – 201

Al-Jowder O, Defernez M, Kemsley EK, Wilson RH (1999) Midi – infrared spectroscopy and chemometrics for the authentication of meat products. *Journal of Agricultural and Food Chemistry*, **47**, 3210 – 3218

McElhinney J, Downey G, Fearn T (1999) Chemometric processing of visible and near infrared reflectance spectra for species identification in selected raw homogenised meats. *Journal of Near Infrared Spectroscopy*, **7**, 145 – 154

Gangidi RR, Proctor A, Pohlman FW (2003) Rapid determination of spinal cord content in ground beef by attenuated total reflectance Fourier transform infrared spectroscopy. *Journal of Food Science*, **68**, 124 0 127

Ding HB, Xu RJ (2000) Near – infrared spectroscopic technique for decetion of beef hamburger adulteration. Journal of Agricultural and Food Chemistry, **48**, 2193 – 2198

Prieto N, Andrés S, Giráldez FJ, Mantecón AR, Lavín P (2007) Discrimination of adult steers (oxen) and young cattle ground meat samples by infrared reflectance spectroscopy (NIRS). *Meat Science*, **79**, 198 – 201

Andrés S, Silva A, Soares – Pereira AL, Martins C, Bruno – Soares AM, Murray I (2008) The use of visible and near infrared reflectance spectroscopy to predict beef M longissimus thoracis et lumborum quality attributes. *Meat Science*, **78**, 217 – 224

Liu Y, Lyon BG, Windham WR, Realini CE, Dean T, Pringle S, Duckett S (2003a) Prediction of color, texture and sensory characteristics of beef steaks by visible and near infrared reflectance spectroscopy. A feasibility study *Meat science*, **65**, 1107 – 1115

Downey G, Beauchêne D (1997) Discrimination between fresh and frozen – then – thawed beef m. longissimus dorsi by combined visible – near infrared reflectance spectroscopy: A feasibility study. *Meat Science*, **45**, 353 – 363