Again,

The Importance of Validation To Deliver Reliable Data

Miloslav Šulc

Department of chemistry Czech University of Life Sciences

WHAT IS THE ROLE OF AN ANALYTICAL CHEMIST?

Chemicals make up everything we use or consume

To deliver reliable data

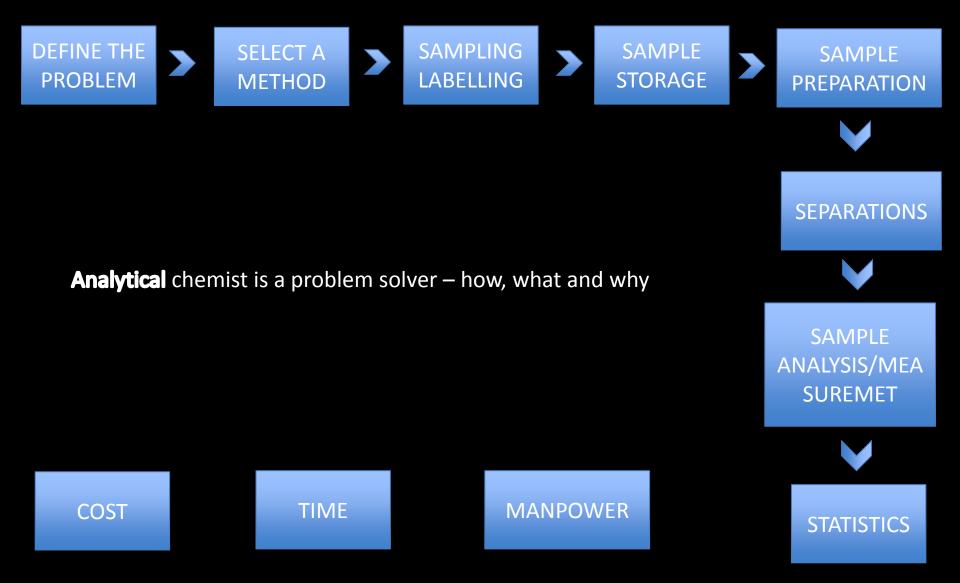
- What is is (qualitative analysis)
- How much it is (quantitative analysis)
- Structure

Quality of manufactured products depends on proper chemical proportions and measurement of the constituents Quantity determination has big impact on ECONOMICS

QUALITY CONTROL

WHAT DO ANALYTICAL CHEMISTS DO?

Analytical chemists work to improve the reliability of existing techniques


Analytical measurements are always improving

New research to discover new principles and utilization of discoveries

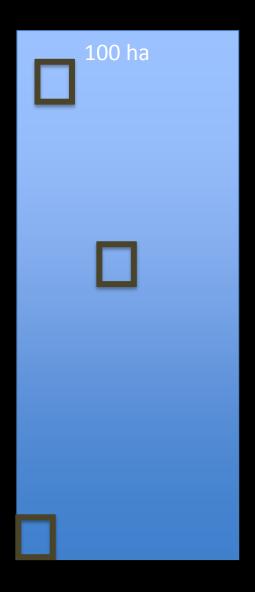
- Food
- Forensic
- Medecine
- Industry
- Environment

- Metabolomics
- Proteomics
- Lipidomics

THE ANALYTICAL WORKFLOW

SAMPLING – a major difficulty

An analysis is usually performed on a very small sample – mg, couple of g How stable is the analyte/s?



gross sample

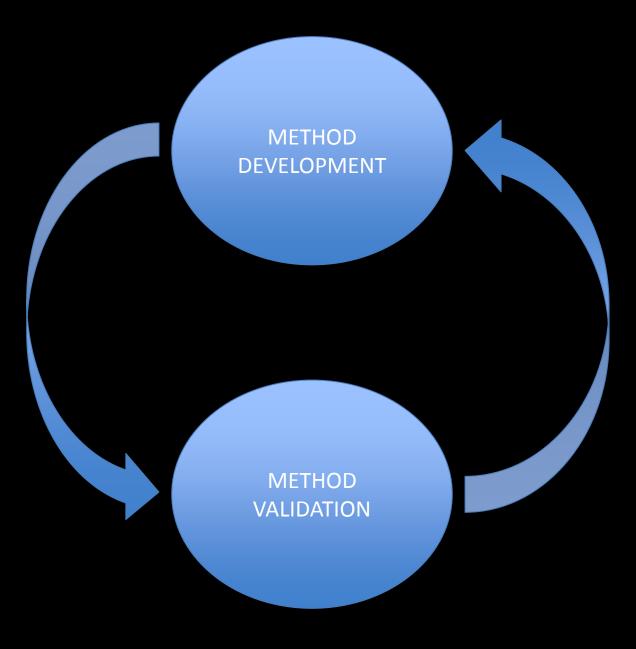
Laboratory sample

analytical sample

SAMPLING EXAMPLE

Material:

Square A: 23 plants, 68 tubers, 8-45 g Square B: 18 plants, 76 tubers, 13-60 g Square C: 30 plants, 51 tubers, 22-58 g



Analytical sample size: 50 mg

Results:	
Square A: 578 - 3,654 mg/100g	
Square B: 86 – 5,876 mg/100g	
Square C: 1,956 – 4,347 mg/100 g	

Median: 2,854 mg/100g Standard deviation: 1,145 mg/100g Random picks: 985,2 4111,9 2974,3 2198,4 3854,9

METHOD DEVELOPMENT & VALIDATION

Develop a method which meets desired parameters

ISO 17025

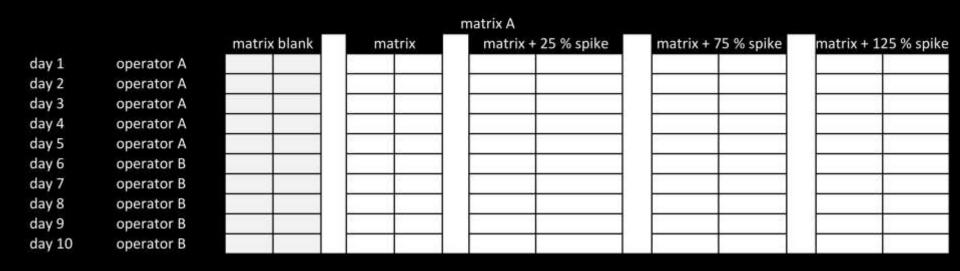
PROVE the method works and delivers the required results

ANALYTICAL RESULTS

All results must be **RELIABLE** because wide-impact decision might be made upon them with great economic/legal/scientific consequences

Every measurement has some imprecision associated with it

Every method should have as narrow as possible the random and systematic errors Quality assurance in the analytical lab


Good laboratory practice (GLP)

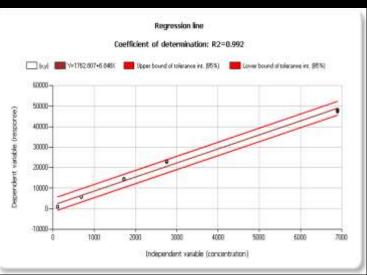
MAIN VALIDATION PARAMETERS

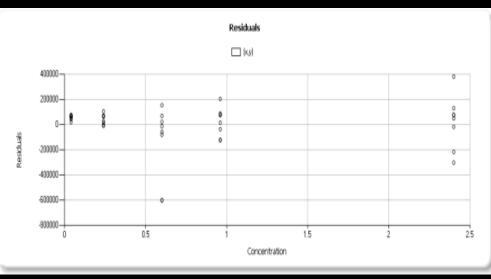
TRUENESS / ACCURACY REPEATABILITY REPRODUCIBILITY **INTERMEDIATE PRECISION** LINEARITY / CALIBRATION **SELECTIVITY** RECOVERY LIMIT OF DETECTION LIMIT OF QUANTITATION **ROBUSTNESS RUGGEDNESS** RANGE **SENSITIVITY STABILITY** LIMIT OF DETECTION **SPECIFICITY UNCERTAINTY**

EXAMPLE: VALIDATION PROTOCOL

Analyze one analyte in one matrix on different days using at least two operators

Best: use isotopically labelled standards and also certified reference materials or at least in-house reference material


EXAMPLE – Validation report (part 1)


Working range

Matrix	Analyte [unit]	Working range*		
IVIALITX		Min	Max	
Α	Vitamin A (all- <i>trans</i> + 13- <i>cis</i>) [RE/100g]	1060	2130	
	Vitamin E (α-tocopherol) [TE/100g]	11	20	
В	Vitamin A (all- <i>trans</i> + 13- <i>cis</i>) [RE/100g]	820	1720	
	Vitamin E (α-tocopherol) [TE/100g]	1.6	3.0	
С	Vitamin A (all- <i>trans</i> + 13- <i>cis</i>) [RE/100g]	890	1980	
	Vitamin E (α-tocopherol) [TE/100g]	8.7	17.5	
D	Vitamin A (all- <i>trans</i> + 13- <i>cis</i>) [RE/100g]	1200	2100	
	Vitamin E (α-tocopherol) [TE/100g]	2.9	5.9	

Calibration / Linearity

		Concentration range		Slope		I	ntercept	Coefficient of	Standard	
Analyte	Unit	Min	Max	Central value	Slope=0 ? (Y/N)	Central value	Intercept=0 ? (Y/N)	determination R ²	deviation of residuals	
Vitamin A	RE/100g	114	6896	6.848	N	1762	Ν	0.992	1531.7	
Vitamin E	TE/100g	0.53	32	87650	N	103975	Ν	0.991	97874	

EXAMPLE – Validation report (part 2)

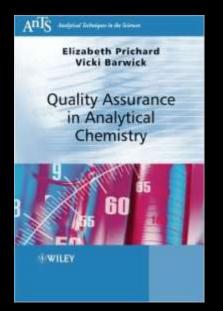
Matrix A

	yte Sample Unit		Number		Repeatability				Intermediate reproducibility			
Analyte		of days * number n of n replicates	SD(r)	CV(r) [%]	r	r% [%]	SD(iR)	CV(iR) [%]	iR	iR% [%]		
Vitamin A	Unspiked	RE/100g	8/2	1063.68	23.37	2.2	64.78	6.1	31.12	2.9	86.25	8.1
Sp Sp	Spiked	RE/100g	8/2	2127.71	16.78	0.8	46.51	2.2	59.22	2.8	164.16	7.7
Vitamin E	Unspiked	TE/100g	8/2	11.53	1.04	9.0	2.88	25.0	1.44	12.5	3.98	34.5
	Spiked		8/2	20.27	0.47	2.3	1.31	6.5	1.48	7.3	4.09	20.2

Trueness / Recovery

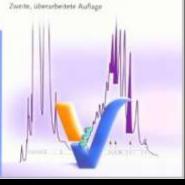
Analyte	Sample	Unit	Numb er of days	Ref. value	Uncertainty of ref. value	Median of results	Rec [%]	SD(Rec)	Rec=100 % ? (Y/N)	SD(Rec) corrected
Vitamin A	Spiked at 100 % intrinsic level	RE/100g	8	1027.82	negligible	1051.96	102.3	0.010	Y	0.010
Vitamin E	Spiked at 100 % intrinsic level	TE/100g	8	9.597	negligible	8.67	90.3	0.021	Ν	0.053

Uncertainty


				CV(iR)	RSD(Rec)	Standard u	uncertainty	Expanded uncertainty		
Analyte	Sample	Unit	Median	[%]	corrected [%]	u	Relative u [%]	U	Relative U [%]	
Vitamin A	Spiked at 100 % intrinsic level	RE/100g	1051.96	3.0	1.02	32.93	3.1	65.86	6.3	
Vitamin E	Spiked at 100 % intrinsic level	TE/100g	8.67	8.3	5.88	0.88	10.2	1.76	20.4	

EXAMPLE – Validation report (part 3)

Fitness-for-purpose


Performance characteristic	Analyte	Target value	Measured value	Target achieved
LOD-LOQ	Vitamin A	≤10 μg RE/100g ≤ 0.02 mg TE/100g	5.15 μg RE/100g 0.02 mg TE/100g	Y
	Vitamin E	CVr [%] <10% for dry food CVr [%] <15% for dry food	≤9% ≤14.2%	Y Y
Repeatability	Vitamin A	CVr [%] <5%	≤2.2%	Y
	Vitamin E	CVr [%] <10% for dry food CVr [%] <15% for dry food	≤9% ≤14.2%	Y Y
Intermediate	Vitamin A	iR[%] <15%	≤10.5%	Y
Reproducibility	Vitamin E	iR [%] <35% for dry food iR [%] <60% for dry food	≤34.5% ≤60.7%*	Y Y
Trueness/Recov	Vitamin A	rec [%] between 80 to 110%	99.5%≤rec≤104%	Y
ery	Vitamin E	rec [%] between 80 to 110%	84%≤rec≤90.4%	Y

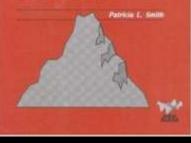
BOOK RESOURCES 1

Quality assurance in Analytical Chemistry By E. Prichard, V. Barwick ISBN: 978-0470012048

Validierung in der Analytik By S Kromidas ISBN: 978-3527329397

WILEY VCH

Stavrus Kramidas


Validierung

in der Analytik

BOOK RESOURCES 2

A Primer for Sampling Solids, Liquids, and Gases

Based on the Seven Sampling Errors of Pierre Gy

B.W. Wenclawiak M. Koch E. Hadjicostas (Eds.) A Primer for Sampling Solids, Liquids and Gases By P. L. Smith ISBN: 978-0898714739

Quality Assurance in Analytical Chemistry By B W Wenclawiak ISBN: 978-3642136085

Quality Assurance in Analytical Chemistry Training and Teaching 2nd Edition

COMPANY OF THE OWNER OF THE OWNER.