

GF

fresh samples directly evaluated by photon scanning microscopy in reflectance mode (three color filters) and SHG x20, x63

CV GF

12

Mucosa with increased collagen fibers in rat with chronic colitis induced by DSS

CHRONIC COLITIS (RAT, DSS) Picrosirius staining for collagen (red) 1 month after induction

MUCIN

- A healthy mucosa
- B adenoma
- C cancer

Changes in Alcyan blue staining of mucin in the rat colonic mucosa crypts during progression of carcinogenesis (AOM induction of cancer)

MUCIN

- A healthy mucosa
- B adenoma
- C cancer

Changes in Alcyan blue staining of mucin in the rat colonic mucosa crypts during progression of carcinogenesis (AOM induction of cancer)

DSS induced chronic colitis (rat)

DSS induced chronic colitis (rat)

 Z_{A}

http://www.optimallivingfoods.com/my-bacteria.html

Billions of bacteria live in our gut, that they colonize shortly after birth. The relationship with the organism is mostly of mutual benefit, and they shape our immune system throughout life

However, the intestine is faced with the dilemma of being **constantly exposed to a large variety of environmental antigens, microbes and pathogens.** As such the intestinal mucosa must be protected against pathogenic invasion and/or exaggerated inflammatory responses.

Simultaneous presence of numerous commensal bacteria and potentially fatal pathogens. The process by which the intestinal immune system distinguishes between those commensal micro-organisms which present no danger (and in contrast may be essential for our health) and true pathogens remains unclear

The mucosal immune system

Tlaskalová-Hogenová H et al: **Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases**. Immunol Lett. 2004 May 15;93(2-3):97-108.

The mucosal immune system has developed specialized regulatory, anti-inflammatory mechanisms for eliminating or tolerating nondangerous, food and airborne antigens and commensal micro-organisms (oral, mucosal tolerance).

The mucosal immune system must provide local defense mechanisms against environmental threats (e.g. invading pathogens). This important requirement is fulfilled by several mechanisms of mucosal immunity: strongly developed innate defense mechanisms ensuring appropriate function of the mucosal barrier.

Defense mechanisms at the mucosal barrier

- existence of unique types of lymphocytes (CD8+ B7+, γδT cells, etc.) and their products
- transport of polymeric immunoglobulins through epithelial cells into secretions (slgA)
- migration and homing of cells originating from the mucosal organized tissues in mucosae and exocrine glands

The important role of commensal bacteria in development of optimally functioning mucosal immune system was demonstrated in germ-free animals (using gnotobiological techniques)

Andrew J. Macpherson¹ and Nicola L. Harris¹

Nicklin S, Miller K: Local and systemic immune responses to intestinally presented antigen. Into Arch Allergy Appl Immunol. 1983; 72(1):87-90

Antigens presented directly to GALT

either by an injection into the Peyer's patches or via a mechanically damaged lamina propria,

stimulated a rapid and vigorous immune response.

Systemic effect: antigen-specific humoral antibody response in the serum

Local effect: antigen-specific immunoglobulin A response in the bile.

CONCLUSIONS: GALT is capable of reacting to foreign materials penetrating the gut wall

García-Lafuente A, et al.: Modulation of colonic barrier function by the composition of the commensal flora in the rat . Gut, 2001; 48(4):503-7

- Escherichia coli, Klebsiella pneumoniae, and Streptococcus viridans significantly increased lumen-to-blood clearance of mannitol
- Lactobacillus brevis had the opposite effect and reduced permeability to mannitol
- Bacteroides fragilis did not induced significant changes. Permeability to dextran was not altered by any of the strains tested.
- CONCLUSIONS: Certain commensal bacteria can modify colonic wall permeability to luminal substances.

Baba N, et al.: Commensal bacteria trigger a full dendritic cell maturation program that promotes the expansion of non-Tr1 suppressor T cells. J Leukoc Biol. 2008 Aug;84(2):468-76.

Dendritic cells (DCs) orchestrate the immune response establishing immunity versus tolerance.

Commensal bacteria instructed DCs to convert naive CD4+ T cells into hyporesponsive T cells that secreted low or no IFN-gamma, IL-10, and IL-17 and instead, displayed suppressor function.

Definitions

- Microbiota: microbial community.
- Microbiome: can refer to microbiota but can also refer to collective genomes and gene products of microbes living within and on humans.
- Metagenome: collection of genomes within complex microbial communities and human DNA, some also include RNA and proteins and other metabolites.
- Biodiversity is a measure of the complexity of a community. Includes number of taxa (richness) and their range of abundance (evenness).

Johnson, Pediatrics, 2012 Weinstock, Nature, 2012 The human gut metagenome has at least 100 times as many genes as "us."

There are 10 to 100 trillion microbes in our GI tract, most in the distal gut.

Two phyla (Bacteroidetes and Firmicutes) make up >90% in adults.

In 2007, the NIH Human Microbiome Project was formed.

Gill, Science, 2006

HOW MANY DIFFERENT ORGANISMS ARE NORMALLY IN OUR BODY?

- Mouth; > 600 Species
- Skin : > 600 Species
- Intestine : (Cecum/ colon) : 8,000 genera
- Vagina : > 200 Species

We Are Really More Bug than Man.....

10% human cells

INTESTINAL MICROBIOME

- >1,000 species but most in adults are from 2 phyla: Firmicutes and Bacteroidetes
- Outnumber human somatic cells by factor of 10²
- Total Weight: 1-2 kg
- 60% of total fecal content
- Concentration: ~1012/gram in colon
- •Total #: ~1014

THE HUMAN GUT FLORA

TABLE. Major Bacteria and Archaea Phyla and Genera Found in the Human Gut Microbiota^a

Phyla	Representative genera
Bacteria	
Firmicutes	Ruminococcus
	Clostridium
	Peptostreptococcus
	Lactobacillus
	Enterococcus
Bacteroidetes	Bacteroides
Proteobacteria	Desulfovibrio
	Escherichia
	Helicohacter
Verrucomicrobia ^b	
Actinobacteria	Bifidobacterium
Cyanobacteria ^b	
Synergistes ^b	
Archaea	
Earyarchaeota	Methanobrevibacter

* Prokaryotic phyla were identified by using an alignment of the 18,348sequence dataset from reference 18.

^b Not related to any known genera.

DiBiase, et al. Mayo Clin Proc 2008;83:460-469

Benefits of the normal flora

- 1. Synthesize and excrete vitamins Vitamin K and Vitamin B12
- Prevent colonization by pathogens
 competing for attachment sites or for essential nutrients
- May antagonize other bacteria the production of substances which inhibit or kill non-indigenous species(nonspecific fatty acids, peroxides, bacteriocins).
- Stimulate the development of certain tissues

 i.e., intestines, certain lymphatic tissues, capillary density
- 5. Stimulate the production of cross-reactive antibodies. Low levels of antibodies produced against components of the normal flora are known to cross react with certain related pathogens, and thereby prevent infection or invasion.

Carbohydrate fermentation and absorption

Digest starch, plant fiber, pectin into SCFAs (short chain fatty acids) viz. acetic acid, propionic acid, butyric acid. Digest proteins like collagen, elastin.

Repression of pathogenic microbial growth

Competition for nutrition, attachment. Produce bacteriocins, Lactic acid.

Metabolic function HCA (heterocyclic amines)

Preventing inflammatory bowel disease SCFAs prevent IBD

Preventing allergy Allegies = C. difficile and S. aureus > Bacteroides and Bifidobacteria

Ecology.....

Babies delivered Normally are dominated by Lactobacillus, Prevotella, and Atopobium

Babies delivered by Cesarian section have microbiota that of the maternal skin community like **Staphylococcus**.

Prevotella is related with carbohydrates and simple sugars.

Bacteroides enterotypes is associated with animal proteins, amino acids and saturated fats.

What can damage Gut Flora

- Antibiotics
- Steroids, The Pill
- Other Drugs
- Stress
- Poor Diet
- Infections
- Disease

- Bottle Feeding
- Old Age
- Pollution
- Radiation
- Alcohol
- Toxic Chemicals
- Dental Work

Aberration	Most relevant observations and potential correlation	References
Crohn's disease	Diversity decrease – reduced F. prausnitzii	Kaser et al. 2010 ⁵¹ ; Sokol et al. 2009 ⁵² ; Willing et al. 2010 ⁵³
Ulcerative colitis	Diversity decrease – reduced A. muciniphila	Png et al. 2010 ⁵⁴ ; Kaser et al. 2010 ⁵¹ ; Lepage et al. 2011 ⁵⁵
Irritable bowel syndrome	Global signatures – increased Doreg and Ruminococcus	Salonen et al. 2010 ³⁶ ; Saulnier et al. 2011 ⁵⁶ ; Rajilić-Stojanović et al. 2011 ¹³
Clostridium difficile infection	Strong diversity decrease – presence of C. difficile	Grehan et al. 2010 ⁵⁷ ; Khoruts et al. 2010 ⁵⁸
Colorectal cancer	Variation in <i>Bacteroides</i> spp. – increased fusobacteria	Sobhani et al. 2011 ⁵⁹ ; Wang et al. 2012 ⁶⁰ ; Marchesi et al. 2011 ⁶¹
Allergy/atopy	Altered diversity – specific signatures	Stsepetova et al. 2007 ⁶² ; Bisgaard et al. 2011 ⁶³ ; Storrø et al. 2011 ⁶⁴
Celiac disease	Altered composition, notably in small intestine	Nistal et al. 2012 ⁶⁵ ; Di Cagno et al. 2011 ⁶⁶ ; Kalliomäki et al. 2012 ⁶⁷
Type 1 diabetes	Signature differences	Vaarela 2011 ⁶⁸ ; Giongo et al. 2011 ⁶⁹ ; Brown et al. 2011 ⁷⁰
Type 2 diabetes	Signature differences	Larssen et al. 2010 ⁷¹ ; Wu et al. 2010 ⁷² ; Kootte et al. 2012 ⁷³
Obesity	Specific bacterial ratios (Bacteroidetes/Firmicutes)	Ley et al. 2006 ⁷⁴ ; Turnbaugh et al. 2009 ¹⁰ ; Musso et al. 2011 ⁷⁵

Table 1 Intestinal microbiota-associated diseases, syndromes, or other aberrations, with summaries of multiple studies that support an association between the microbiota and the indicated aberration.

Dietary intervention	Change in microbiota	
High-fat diet	Bacteroidetes ↓	
	Firmicutes †	
	Proteobacteria 1	
High-fat/High-sugar diet	Bacteroidetes ↓	
	Firmicutes † (Erysipelotrichi, Bacilli)	
Protein-rich/Saturated fats	"Bacteroides" enterotype	
Carbohydrate-enriched diet	"Prevotella" enterotype	
Self-reported vegetarians	"Prevotella" enterotype	
High fiber content	Bacteroidetes † , Actinobacteria †	
	Firmicutes 🌡 , Proteobacteria 🜡	
Western diet	"Bacteroides" enterotype	
Vegetarian lifestyle	Bacteroides spp. 1, Enterobacteriaceae spp. 1	
	Bifidobacterium spp. \downarrow , Escherichia coli \downarrow	

Table 1. Effect of Various Diets on the Intestinal Microbiota

Moschen, Gut and Liver, 2012

Gut microbiome may alter obesity.

- Mice and human microbiotas have Firmicutes and Bacteroidetes dominating.
- Transplantation of an "obese microbiota" to germ free mice results in increased adiposity compared to transplantation of a lean microbiota.
- Mice fed high calorie Western diet for 8 weeks increased levels of Firmicutes and decreased Bacteroidetes; this has been seen in humans as well.

Reinhardt, JPGN, 2009 Ferrer, Env Micro, 2012

TUMOR IMMUNOLOGY

LOCAL IMMUNITY

SYSTEMIC IMMUNITY

LOCAL IMMUNITY

SYSTEMIC IMMUNITY

INITIAL TUMOR

LOCAL IMMUNITY

.....

0000

• • •

10000 C

SYSTEMIC IMMUNITY

LN

• • • •

000

IL-2

IFNy

TH1

INITIAL TUMOR

0008

ACUTE INFLAMMATION

ACUTE ____ CHRONIC INFLAMMATORY NETWORK

INFLAMMATORY

NF-kB

TRAL

MICROENVIRONMENT

0000

•

LOCAL IMMUNITY

000

ENE

SYSTEMIC IMMUNITY

•••••

igodol

∞ ***** •∕ TH1

° • • • •

reo

< pH

.....

GROWING TUMOR

peroxide JEN-alph

NEUTROPHYLS

CR COLON (rat)

MACROPHAGES

E-E

MACROPHAGES